Iridium carbonyl clusters

VII *. The crystal structure of $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7^-$ (CHCO₂Et)₂, a tetrahedral cluster with a simple bridging and a triply-bridging alkylidene-ester ligand

Melvyn Rowen Churchill and Linda Vollaro Biondi,

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214 (U.S.A.)

(Received February 23rd, 1988)

Abstract

The reaction of $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_{10}$ with N₂CHCO₂Et produces the bis(alkylidene) species $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ which has been subjected to an X-ray structural analysis. The complex $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ crystallizes in the centrosymmetric monoclinic space group C2/c (No. 15) with *a* 34.097(5), *b* 8.7057(12), *c* 19.811(3) Å, β 111.053(12)°, *V* 5488 Å³ and Z = 8. Diffraction data were collected with a Syntex P2₁ automated diffractometer (Mo- K_{α} radiation, 2θ 4.5–45.0°) and the structure was solved and refined to *R* 4.7% for all 3621 independent data (*R* 3.9% for those 3216 data with $|F_0| > 3\sigma(|F_0|)$.

 $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ contains a tetrahedral cluster of metal atoms. Ir(1) and Ir(2) are each associated with two terminal carbonyl ligands and are bridged by a \supset CHCO₂Et ligand. Each tungsten atom is linked to an $\eta^5-C_5H_5$ ligand; W(1) is associated with only one carbonyl ligand, whereas W(2) is associated with two (one of which is involved in a "semi-bridging" interaction with Ir(2)). The structure is completed by a second CHCO₂Et ligand; the alkylidene carbon atom bridges Ir(1) and W(2) while the ketonic oxygen forms a donor bond to W(1).

Introduction

The syntheses [7] and structures of the mixed metal clusters $(\eta^5 - C_5 H_5)WIr_3(CO)_{11}$ [3] and $(\eta^5 - C_5 H_5)_2 W_2 Ir_2(CO)_{10}$ [2] have previously been reported along with studies as their utility as precursors to alumina-supported bimetallic particles [7]. It is of

^{*} For previous parts, see ref. 1-6.

interest to ascertain how these bimetallic clusters behave in their reactions with small organic moieties. We have shown previously [8] that the tetrahedral heterometallic cluster $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_{10}$ reacts with alkynes $(RC\equiv CR)$ by two pathways involving: (i) cleavage of a W–W bond to form $(\eta^5-C_5H_5)_2Ir_2W_2(CO)_8(C_2R_2)$, a species in which the $W_2Ir_2C_2$ framework is octahedral, and (ii) cleavage of an Ir–Ir bond along with ligand cleavage and alkylidene-alkyne coupling to form the μ_3 -alkylidyne- μ_3 - η^3 -allyldiyl species $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_6(\mu_3-CR)(\mu_3-\eta^3-C_3R_3)$. We now report a structural study of $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$, produced by reaction of $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_{10}$ with ethyl diazoacetate, N₂CHCO₂Et. A preliminary account of this work has been published previously [9].

Experimental

Crystals suitable for X-ray diffraction studies, synthesized and characterized as described previously [9], were supplied by Professor J.R. Shapley and Dr. C.H. McAteer of the University of Illinois.

A purple-brown, rather plate-like, crystal of approximate orthogonal dimensions $0.3 \times 0.2 \times 0.1 \text{ mm}^3$ was selected for the X-ray diffraction study. It was sealed, in an inert (Ar) atmosphere, into a 0.2 mm-diameter thin-walled glass capillary, which was mounted on a eucentric goniometer on a Syntex P2₁ automated four-circle diffractometer. Crystal alignment, determination of crystal class (monoclinic, 2/m diffraction symmetry), the orientation matrix and accurate cell dimensions (based on 25 reflections with 2θ 25–30°, appropriately dispersed in reciprocal space) were carried out as has been described previously [10]. Details of data collection (using a coupled θ (crystal)-2 θ (counter) scan) are given in Table 1.

All data were corrected empirically for the effects of absorption (μ 191.6 cm⁻¹) by interpolation, in both 2θ and ϕ , between normalized transmission curves based upon ψ -scans of a series of close-to-axial reflections. Corrections for Lorentz and polarization factors were applied and data were merged to provide a unique set. Any reflection with I(net) < 0 was assigned the value $|F_o| = 0$; none was expunged. Data were placed upon an approximately absolute scale by means of a Wilson plot.

The diffraction symmetry $(C_{2h}; 2/m)$ and the systematic absences *hkl* for h + k = 2n + 1 and *h0l* for l = 2n + 1 (h = 2n + 1) are consistent with the noncentrosymmetric space group $Cc(C_s^4;$ No. 9) or the centrosymmetric monoclinic space group C2/c (C_{2h}^6 ; No. 15) [11]. The latter centrosymmetric possibility was chosen on the basis of (a) intensity statistics and (b) its greater probability with Z = 8; the successful solution of the structure in this higher symmetry space group confirms the correctness of our choice.

Solution and refinement of the structure

All calculations were carried out under the SUNY-Buffalo version of the Syntex XTL crystallographic program package [12]. Structure factors were based upon the analytical functions for neutral atoms [13a]; both the real $(\Delta f')$ and imaginary $(i \Delta f'')$ components of anomalous dispersion [13b] were included for all non-hydrogen atoms. The function minimized during full-matrix least-squares refinement was

Table 1

Experimental data for	r the X-ray (diffraction stud	dy of $(\eta^5 - C)$	$(_5H_5)_2W_2Ir_2$	$(CO)_7(CHCO_2Et)_2$
-----------------------	---------------	------------------	----------------------	--------------------	----------------------

(A) Crystal parameters at 24°C	
Cryst. system: monoclinic	Space group $C2/c$ (C_{2h}^6 ; No. 15)
a 34.0974(52) Å	Formula $C_{25}H_{22}Ir_2O_{11}W_2$
b 8.7057(12) Å	Mol. wt. 1250.6
c 19.8106(31) Å	Z = 8
β 111.053(12)°	$D(caicd.) 3.30 \text{ g cm}^{-3}$
V 5488.1(15) Å ³	
(B) Collection of diffraction data	
Diffractometer	Syntex P2 ₁
Radiation	Mo- <i>K_α</i> (λ 0.710730 Å)
Monochromator	highly oriented (pyrolytic) graphite, equatorial mode,
	$2\theta_{\rm m}$ 12.2°, assumed 50% perfect/50% ideally mosaic
	for polarization correction.
Scan type	coupled θ (crystal)-2 θ (counter) at 2.5 deg/min in 2 θ .
Scan width	symmetrical, $[2.0 + \Delta(\alpha_2 - \alpha_1)]^{\circ}$
Reflections measd.	$+h, +k, \pm l$ for $h + k = 2n$ and $2\theta = 4.5-45.0^{\circ}$;
	4114 total yielding 3621 unique data.
Bkgd measurement	stationary crystal and counter at each end of the 2θ scan;
	cach for onc-half of total scan time.
Standard reflections	3 approximately mutually orthogonal reflections remeasured
	after each 97 data reflections; no significant fluctuations
	nor decay were observed.
Absorption coeff.	$\mu(Mo-K_{\pi})$ 191.6 cm ^{-*} ; empirical correction applied.

 $\sum w(|F_o| - |F_c|)^2$ where $w = [\{\sigma(|F_o|)\}^2 + \{0.03 |F_o|\}^2]^{-1}$. Discrepancy indices used below are defined in eq. 1-3.

$$R_{\rm F}(\%) = 100\Sigma ||F_{\rm o}| - F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|$$
(1)

$$R_{wF}(\%) = 100 \left[\Sigma w (|F_{o}| - |F_{c}|)^{2} / \Sigma w |F_{o}|^{2} \right]^{1/2}$$
(2)

GOF =
$$\left[\sum w (|F_{o}| - |F_{c}|)^{2} / (NR - NP) \right]^{1/2}$$
 (3)

In, eq. 3, NR is the number of reflections and NP is the number of parameters refined.

The phase problem was solved by direct methods by use of the program MULTAN [14]; the positions of the four heavy atoms were determined from an "*E*-map". The identities of the atoms were not immediately apparent (since Z(W) = 74 versus Z(Ir) = 77) but were, in fact, assigned correctly based upon distances being W-W > W-Ir > Ir-Ir. A difference-Fourier map, based upon data phased by these four metal atoms, quickly revealed the positions of all remaining non-hydrogen atoms (and confirmed the identity of the W atoms by virtue of their attached η^5 -C₅H₅ ligands). Least-squares refinement of positional and thermal parameters (anisotropic only for the W₂Ir₂ core) for all non-hydrogen atoms, with all hydrogen atoms included in idealized positions (d(C-H) 0.95 Å [15] and the appropriate externally-bisecting planar (sp^2) or staggered tetrahedral (sp^3) geometry) led quickly to convergence with R_F 4.7%, R_{wF} 5.4% and GOF = 1.30 for 181 parameters refined against all 3621 independent reflections. (R_F 3.9% and R_{wF} 5.0% for those

Table 2

Final positional and thermal parameters for atoms in the $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ molecule. Anisotropic thermal parameters (with esd's) for the metal atoms in $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C(14)0.2211(5)0.6116(18)0.0358(9)2.86(30) $C(15)$ 0.1605(5)0.7965(21)0.0682(11)2.87(24)
C(15) 0.1605(5) 0.7065(21) 0.0692(11) 2.97(24)
(13) $(1003(3)$ $(1703(21)$ $(1003(11)$ $(38)(34)$
Cp(1) 0.0449(5) 0.8023(19) $-0.1137(9)$ 3.06(30)
Cp(2) 0.0724(5) 0.8597(19) $-0.0451(10)$ 3.25(32)
Cp(3) 0.0555(5) 0.8075(19) 0.0070(10) 3.21(30)
Cp(4) 0.0184(4) 0.7162(17) -0.0299(9) 2.59(27)
Cp(5) $0.0131(5)$ $0.7192(20)$ $-0.1033(10)$ $3.79(34)$
Cp(6) 0.1647(6) 0.2757(23) -0.1562(11) 4,6(4)
Cp(7) 0.1972(6) 0.3752(23) -0.1092(12) 4.6(4)
Cp(8) 0.1906(5) 0.5126(21) -0.1404(11) 3.94(35)
Cp(9) 0.1563(6) 0.5173(24) -0.2074(12) 5.0(4)
Cp(10) 0.1390(5) 0.3695(21) -0.2165(11) 4.0(4)
H(1) 0.0480 0.8187 -0.1589 6.0
H(2) 0.0969 0.9203 -0.0362 6.0
H(3) 0.0666 0.8288 0.0574 6.0
H(4) 0.0011 0.6646 -0.0085 6.0
H(5) -0.0093 0.6708 -0.1407 6.0
H(6) 0.1608 0.1695 -0.1488 6.0
H(7) 0.2188 0.3476 -0.0650 6.0
H(8) 0.2073 0.6000 -0.1198 6.0
H(9) 0.1469 0.6026 -0.2391 6.0
H(10) 0.1147 0.3363 -0.2554 6.0
H(11) 0.0926 0.2140 -0.1343 6.0

Atom	x		у	Z		B _{iso}
H(12)	0	0.1597	0.4833	0.1	466	6.0
H(3A)	-0	0.0268	0.2430	-0.1	307	6.0
H(3B)	-0	0.0281	0.2835	-0.2	2078	6.0
H(4A)	-0	0.0728	0.0824	-0.2	2138	6.0
H(4B)	-0	0.0356	-0.0121	-0.1	619	6.0
H(4C)	-0	0.0369	0.0284	-0.2	2390	6.0
H(7A)	C	.2689	0.5305	0.3	8071	6.0
H(7B)	C	0.2742	0.3887	0.2	2637	6.0
H(8A)	C).3236	0.5599	0.2	2739	6.0
H(8B)	C).2895	0.6821	0.2	2369	6.0
H(8C)	C).2948	0.5403	0.1	1935	6.0
Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Ir(1)	1.635(24)	2.118(28)	1.765(29)	0.110(18)	0.389(20)	0.038(21)
Ir(2)	1.753(25)	2.496(28)	1.541(28)	-0.271(18)	0.215(20)	0.109(22)
W(1)	1.583(24)	2.112(28)	1.389(28)	0.111(18)	0.274(20)	-0.058(21)
W(2)	1.831(25)	3.619(33)	1.349(29)	-0.259(20)	0.624(20)	- 0.250(24)

Table 2 (continued)

3216 reflections with $|F_o| > 3\sigma(|F_o|)$. A final difference-Fourier map showed no unexpected features; the largest residuals were peaks of height $\sim 1.3e^-$ in the vicinity of the metal atoms. Final positional and thermal parameters are collected in Table 2.

Description of the structure

The crystal contains discrete molecular units of $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7-(CHCO_2Et)_2$ which are mutually separated by normal Van der Waals' distances; there are no abnormally close intermolecular contacts. Each molecule is chiral, but the crystal contains an ordered racemic mixture of the two enantiomers, by virtue of the inversion centers and *c*- and *n*-glide planes present in the centrosymmetric space group C2/c. The molecular geometry and atomic labelling scheme is depicted in Fig. 1, while a stereoscopic view of the molecule is provided by Fig. 2. Interatomic distances and angles, along with their esd's, are collected in Tables 3 and 4, respectively.

The molecule possesses a tetrahedral W_2Ir_2 core in which the homonuclear distances are W(1)-W(2) 2.995(1) Å and Ir(1)-Ir(2) 2.653(1) Å. The four heteronuclear distances are, in decreasing order, Ir(1)-W(1) 2.825(1), Ir(1)-W(2) 2.802(1), Ir(2)-W(2) 2.784(1) and Ir(2)-W(1) 2.781(1) Å; aver. (Ir-W) 2.798 Å. These bond lengths are similar to those found in the parent compound, $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_{10}$ [2], viz., W-W 2.991(1), Ir-Ir 2.722(1) and Ir-W 2.796(1)-2.863(1) Å (aver. 2.835 Å).

The cluster as a whole is associated with the expected 60 outer valence electrons (i.e., two $d^6 \, W^0$ atoms, two $d^9 \, Ir^0$ atoms, two electrons from each of seven carbonyl ligands, five electrons from each of the two η^5 -cyclopentadienyl systems, two electrons from the μ -CHCO₂Et ligand and four electrons from the μ_3 -CHCO₂Et ligand). Nevertheless, the distribution of electrons is not uniform. Each iridium atom is linked to two terminal carbonyl ligands, but Ir(2) is bonded (through C(5))

Fig. 1. Labelling of atoms in the $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ molecule (ORTEP2 diagram; 30% probability ellipsoids). Note that "semi-bridging" M...CO interactions have not been drawn in (see text). Note that Ir(2)...C(10) is 2.307(16) Å.

to only one CHCO₂Et ligand whereas Ir(1) is bonded to both CHCO₂Et ligands (though C(1) and C(5)). Each tungsten atom is attached to an η^5 -cyclopentadienyl ligand. W(1) is linked to a single carbonyl ligand and to the μ_3 -CHCO₂Et ligand though O(1) of the ester group. In contrast to this, W(2) is associated with two carbonyl ligands and is linked (though C(1)) to the same μ_3 -CHCO₂Et ligand.

Fig. 2. A stereoscopic view of the $(\eta^5 - C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$ molecule.

Table	3
-------	---

Interatomic distances (Å) and esd's for $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(CHCO_2Et)_2$

Atoms	Distance	Atoms	Distance
(A) Metal – metal di	stances		
W(1) - W(2)	2.995(1)	Ir(1)–Ir(2)	2.653(1)
W(1)-Ir(1)	2.825(1)	W(2)–Ir(1)	2.802(1)
W(1)–Ir(2)	2.781(1)	W(2)-Ir(2)	2.784(1)
(B) Metal – CHCO ₂	Et distances		
Ir(1)-C(1)	2.144(15)	Ir(1)-C(5)	2.113(15)
W(2)-C(1)	2.193(14)	Ir(2)-C(5)	2.110(5)
W(1)-O(1)	2.154(10)		
(C) Distances within	the CHCO ₂ Et ligands		
C(1)-C(2)	1.427(22)	C(5)–C(6)	1.449(23)
C(2) - O(1)	1.264(18)	C(6)-O(4)	1.239(21)
C(2) - O(2)	1.336(19)	C(6)-O(3)	1.338(21)
O(2) - C(3)	1.454(22)	O(3)-C(7)	1.452(22)
C(3)-C(4)	1.484(25)	C(7)-C(8)	1.393(30)
(D) $M - CO$ and $C -$	O distances		
W(1)-C(9)	1. 940(15)	C(9)-O(9)	1.164(19)
W(2)-C(10)	2.055(16)	$\dot{\alpha}$	1.200(20)
W(2)-C(11)	1.918(17)	$\dot{\mathbf{C}}(11) - \dot{\mathbf{O}}(11)$	1.186(22)
Ir(1) - C(12)	1.862(17)	C(12) - O(12)	1.184(23)
Ir(1)-C(13)	1.889(19)	C(13)-O(13)	1.165(23)
Ir(2) - C(14)	1.897(17)	C(14)-O(14)	1.168(23)
Ir(2)C(15)	1.832(19)	C(15)O(15)	1.153(25)
(E) Possible semibri	dging MCO distances < 3	3Å	
Ir(2)C(10)	2.307(16)	W (1) C (11)	2.934(18)
Ir(1)C(9)	2.757(14)	W(1)C(10)	2.945(16)
(F) $W = (\pi^{5} - C_{c}H_{c})$	distances		
W(1)-Cp(1)	2.369(17)	W(2) = Cp(6)	2.390(21)
W(1) - Cp(2)	2.334(17)	W(2) - Cp(7)	2.394(21)
W(1) - Cn(3)	2.278(17)	W(2) - Cp(8)	2.300(19)
W(1) - Cp(4)	2.284(16)	W(2) - Cp(9)	2.331(22)
W(1) - Cp(5)	2.345(19)	W(2) - Cp(10)	2.328(20)
W(1)-Cp ^a	1.984	W(2)-Cp ^a	2.021
(G) $C - C$ distances	within the cyclopentadienvl	ligands	
Cp(1)-Cp(2)	1 437(25)	Cp(6) = Cp(7)	1 450(29)
Cp(2) - Cp(3)	1.427(25)	Cp(7) - Cp(8)	1.328(27)
Cp(3) - Cp(4)	1.451(23)	Cp(8) - Cp(9)	1 419(30)
Cp(4) - Cp(5)	1.400(25)	$C_{p}(9) - C_{p}(10)$	1.398(28)
Cp(5)–Cp(1)	1.379(25)	Cp(10)–Cp(6)	1.452(28)
average	1.419±0.029	Average	1.409±0.051

^a Cp is the centroid of the appropriate η^{5} -C₅H₅ ligand.

Formal electron counting shows that Ir(1) and W(1) are each associated with 18 outer-valence electrons, W(2) with 19 and Ir(2) with 17.

The formally electron-rich nature of W(2) and electron-poor nature of Ir(2) are balanced by electron donation through a "semi-bridging" interaction [16] of the carbonyl group C(10)-O(10) with Ir(2). Thus, the W(2)-C(10) bond of 2.055(16) Å

Atoms	Angle	Atoms	Angle
(A) Intermetallic angles			
W(1)-W(2)-Ir(1)	58.22(2)	W(1) - Ir(1) - Ir(2)	60.92(2)
W(1) - W(2) - Ir(2)	57.39(2)	W(2) - Ir(1) - Ir(2)	61.31(2)
Ir(1) - W(2) - Ir(2)	56.71(2)	W(1)-Ir(1)-W(2)	64.32(2)
W(2)-W(1)-Ir(1)	57.46(2)	W(1) - Ir(2) - Ir(1)	62.61(2)
W(2)-W(1)-Ir(2)	57.49(2)	W(2)-Ir(2)-Ir(1)	61.98(2)
Ir(1)-W(1)-Ir(2)	56.48(2)	W(1)-Ir(2)-W(2)	65.12(2)
(B) $C - M - M$ and $M - C$ -	- M angles involving th	he $CHCO_2Et$ ligands	
C(1)-Ir(1)-Ir(2)	109.75(39)	C(5) - Ir(1) - Ir(2)	51.03(40)
C(1)-Ir(1)-W(1)	75.71(39)	C(5) - Ir(1) - W(1)	90.47(40)
C(1)-Ir(1)-W(2)	50.52(39)	C(5)-Ir(1)-W(2)	111.36(40)
C(1)-W(2)-Ir(1)	49.01(38)	C(5)-Ir(2)-Ir(1)	51.14(40)
C(1)-W(2)-W(1)	71.40(38)	C(5) - Ir(2) - W(1)	91.76(40)
C(1)-W(2)-Ir(2)	103.84(38)	C(5)-Ir(2)-W(2)	112.2(40)
Ir(1)-C(1)-W(2)	80.47(50)	Ir(1)-C(5)-Ir(2)	77.83(50)
(C) Angles within the CH	$CO_2 Et$ ligands		
C(1)-C(2)-O(1)	123.1(14)	C(5)-C(6)-O(4)	125.9(16)
C(1)-C(2)-O(2)	119.3(14)	C(5)-C(6)-O(3)	112.2(14)
O(1)-C(2)-O(2)	117.5(14)	O(4)-C(6)-O(3)	121.9(16)
C(2)-O(2)-C(3)	118.1(12)	C(6)-O(3)-C(7)	120.3(14)
O(2)C(3)C(4)	110.7(14)	O(3)-C(7)-C(8)	112.2(16)
C(2)-O(1)-W(1)	116.6(10)		
(D) Metal – carbon – oxyg	en angles		
W(1)-C(9)-O(9)	168.6(13)	Ir(1)-C(12)-O(12)	176.9(15)
W(2)-C(10)-O(1)	153.1(13)	Ir(1)-C(13)-O(13)	172.7(16)
W(2)-C(11)-O(11)	171.9(15)	Ir(2)-C(14)-O(14)	179.3(15)
		Ir(2)-C(15)-O(15)	174.1(18)
Ir(1) · · · C(9)-O(9)	119.8(11)	$Ir(2) \cdots C(10) - O(10)$	127.5(12)
$W(1) \cdots C(11) - O(11)$	115.2(12)	$W(1) \cdots C(10) - O(10)$	121.9(12)
(E) Angles within the cycle	opentadienyl ligands		
Cp(5)-Cp(1)-Cp(2)	108.9(15)	Cp(10)-Cp(6)-Cp(7)	106.7(17)
Cp(1)-Cp(2)-Cp(3)	106.1(15)	Cp(6)-Cp(7)-Cp(8)	106.1(18)
Cp(2)-Cp(3)-Cp(4)	108.4(15)	Cp(7)-Cp(8)-Cp(9)	113.9(18)
Cp(3)-Cp(4)-Cp(5)	106.1(14)	Cp(8)-Cp(9)-Cp(10)	105.2(18)
Cp(4)-Cp(5)-Cp(1)	110.6(16)	Cp(9)-Cp(10)-Cp(6)	108.1(18)

Table 4

Selected interatomic angles (deg) and esd's for $(\eta^5 - C_5 H_5)_2 W_2 Ir_2(CO)_7 (CHCO_2 Et)_2$

is longer than the other W-CO bonds (cf. W(1)-C(9) 1.940(15) Å and W(2)-C(11) 1.918(17) Å; average 1.929 ± 0.016 Å), and is accompanied by the "semi-bridging" interaction Ir(2) ··· C(10) 2.307(16) Å, with angle W(2)-C(10)-O(10) 153.1(13)° and angle Ir(2) ··· C(10)-O(10) 127.5(12)°. The " α -value" for this interaction defined [17] as $(d_2 - d_1)/d_1$ (where d_1 is the shorter M-CO distance and d_2 is the longer M-CO distance) is 0.12; this is at the "strong interaction" end of the range $(\alpha = 0.1-0.6)$ that Curtis et al. [16] define as the semi-bridging regime. It should be emphasized that the heteronuclear nature of the semi-bridged W(2)-Ir(2) linkage, coupled with internally calculated atomic radii of r(W) 1.498 Å (from W(1)-W(2) 2.995(1) Å) and r(Ir) 1.327 Å (from Ir(1)-Ir(2) 2.653(1) Å), lead to a "partially-corrected α -value" of 0.21, which we believe to be a more realistic value. Here we

define the "partially-corrected α -value" as $[(d_1 - r(M_1)) - (d_2 - r(M_2))]/d_1$. We see no unique way of correcting the denominator (d_1) for differences in radii between M₁ and M₂. Clearly, however, the interaction is of a "semi-bridging" rather than simple " μ_2 -bridging" nature.

The remaining W-C-O systems show substantial deviations from linearity and some possible very weak interactions with other metal atoms. These are of far less importance than the W(2)-C(10) \cdots Ir(2) interaction and could simply result from the crowding of ligands on the coordination surface of the W₂Ir₂ cluster. In decreasing order of importance there are as follows:

(i) angle W(1)-C(9)-O(9) 168.6(13)°, with W(1)-C(9) 1.940(15) Å and Ir(1) \cdots C(9) 2.757(14)Å, yielding $\alpha = 0.42$ and α (partially corrected) = 0.51 for the W(1)-C(9) \cdots Ir(1) interaction;

(ii) angle W(2)-C(11)-O(11) 171.9(15)°, with W(2)-C(11) 1.918(17) Å and W(1) \cdots C(11) 2.934(18)° with $\alpha = 0.53$ for the W(2)-C(11) \cdots W(1) interaction; (iii) a second weak interaction of W(2)-C(10)-O(10) with another metal atom; thus W(1) \cdots C(10) 2.945(16) Å as compared to W(2)-C(10) 2.055 (16) Å, providing $\alpha = 0.43$ for the W(2)-C(10) \cdots W(1) interaction.

In contrast to the above, the Ir-C-O systems are close to linear $(172.7(16)-179.3(15)^{\circ})$ and Ir-CO distances are internally consistent $(1.832(15)-1.897(17) \text{ Å}, \text{ average } 1.870 \pm 0.029 \text{ Å}).$

The most interesting feature of the structure is the presence of two bridging CHCO₂Et ligands which are linked by two different modes to the tetrahedral W_2Ir_2 cluster. The CHCO₂Et ligand with C(5) as its α -carbon atom bridges the Ir(1)–Ir(2) linkage symmetrically, with Ir(1)–C(5) 2.113(15) Å and Ir(2)–C(5) 2.110(15) Å (average 2.112 ± 0.002 Å); the angle Ir(1)–C(5)–Ir(2) is 77.83(50)°. Other dimensions in this ligand are normal, with C(5)–C(6) 1.449(23) Å, C(6)–O(3) 1.338(21) Å and C(6)=O(4) 1.239(21) Å.

The second CHCO₂Et ligand, with C(1) as its α -carbon atom, caps the cluster face Ir(1)–W(1)–W(2) in a μ_3 - η^2 mode. Thus, C(1) bridges the Ir(1)–W(2) linkage with Ir(1)–C(1) 2.144(15) Å, W(2)–C(1) 2.193(14) Å and angle Ir(1)–C(1)–W(2) 80.47(50)°. In addition, O(1), the ketonic oxygen atom of the ester group, provides a σ -donor linkage to W(1), with W(1)–O(1) 2.154(10) Å. Other dimensions in this ligand include C(1)–C(2) 1.427(22) Å, C(2)–O(2) 1.336(19) Å and C(2)=O(1) 1.264(18) Å. The increase in C(2)=O(1) relative to C(6)=O(4) is in the expected direction but is not statistically significant beyond the 1.3 σ level.

The parent molecule $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_{10}$ [2] is known to have a crowded coordination surface and it is probably impossible to replace two carbonyl groups by μ -CHCO₂Et ligands to form $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_8(\mu$ -CHCO₂Et)₂ because of the greater cone angle of μ -CHCO₂Et versus CO. The observed product $(\eta^5-C_5H_5)_2W_2Ir_2(CO)_7(\mu$ -CHCO₂Et)(μ_3 - η^2 -C,C,O-CHCO₂Et), in which three carbonyl groups are replaced by two CHCO₂Et groups, is presumably the lowest energy sterically attainable structure with the minimum number of carbonyls removed.

Additional material. A table of observed and calculated structure factor amplitudes is available upon request from one of us (M.R.C.).

References

1 Part VI. M.R. Churchill, Y.-J. Li, J.R. Shapley, D.S. Foose and W.S. Uchiyama, J. Organomet. Chem., 312 (1986) 121.

- 2 Part V. M.R. Churchill, C. Bueno and J.P. Hutchinson, Inorg. Chem., 21 (1982) 1359.
- 3 Part IV. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 20 (1981) 4112.
- 4 Part III. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 19 (1980) 2765.
- 5 Part II. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 18 (1979) 2451.
- 6 Part I. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 17 (1978) 3528.
- 7 J.R. Shapley, S.J. Hardwick, D.S. Foose, G.D. Stucky, M.R. Churchill, C. Bueno and J.P. Hutchinson, J. Am. Chem. Soc., 103 (1981) 7383.
- 8 J.R. Shapley, C.H. McAteer, M.R. Churchill and L.V. Biondi, Organometallics, 3 (1984) 1595.
- 9 M.R. Churchill, L.V. Biondi, J.R. Shapley and C.H. McAteer, J. Organomet. Chem., 280 (1985) C63.
- 10 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 11 International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, Birmingham, England, 1965: pp 89 and 101.
- 12 Syntex XTL Operations Manual (2nd ed), Syntex Analytical Instruments, Cupertino, California (1976).
- 13 International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, England, 1974:
 (a) p. 99-101; (b) p. 149-150.
- 14 G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr., A, 27 (1971) 368.
- 15 M.R. Churchill, Inorg. Chem. 12 (1973) 1213.
- 16 F.A. Cotton, Prog. Inorg. Chem., 21 (1976) 1.
- 17 M.D. Curtis, K.R. Han, and W.M. Butler, Inorg. Chem., 19 (1980) 2096.