Journal of Organometallic Chemistry, 353 (1988) 73-82
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Iridium carbonyl clusters

VII ${ }^{*}$. The crystal structure of $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right)_{2} \mathbf{W}_{2} \mathrm{Ir}_{2}(\mathbf{C O})_{7}-$ $\left(\mathrm{CHCO}_{2} \mathrm{Et}_{\mathbf{2}}\right)_{2}$, a tetrahedral cluster with a simple bridging and a triply-bridging alkylidene-ester ligand

Melvyn Rowen Churchill and Linda Vollaro Biondi,
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214 (U.S.A.)

(Received February 23rd, 1988)

Abstract

The reaction of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{10}$ with $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$ produces the bis(alkylidene) species $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ which has been subjected to an X-ray structural analysis. The complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ crystallizes in the centrosymmetric monoclinic space group $C 2 / c$ (No. 15) with a $34.097(5), b 8.7057(12), c 19.811(3) \AA, \beta 111.053(12)^{\circ}, V 5488 \AA^{3}$ and $Z=8$. Diffraction data were collected with a Syntex $\mathrm{P}_{2}{ }_{1}$ automated diffractometer (Mo-K \boldsymbol{K}_{α} radiation, $2 \theta 4.5-45.0^{\circ}$) and the structure was solved and refined to $R 4.7 \%$ for all 3621 independent data ($R 3.9 \%$ for those 3216 data with $\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ contains a tetrahedral cluster of metal atoms. $\operatorname{Ir}(1)$ and $\operatorname{Ir}(2)$ are each associated with two terminal carbonyl ligands and are bridged by a $>\mathrm{CHCO}_{2} \mathrm{Et}$ ligand. Each tungsten atom is linked to an $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand; $\mathbf{W}(1)$ is associated with only one carbonyl ligand, whereas $W(2)$ is associated with two (one of which is involved in a "semi-bridging" interaction with $\operatorname{Ir}(2)$). The structure is completed by a second $\mathrm{CHCO}_{2} \mathrm{Et}$ ligand; the alkylidene carbon atom bridges $\operatorname{Ir}(1)$ and $\mathbf{W}(2)$ while the ketonic oxygen forms a donor bond to $\mathbf{W}(1)$.

Introduction

The syntheses [7] and structures of the mixed metal clusters $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{WIr}_{3}(\mathrm{CO})_{11}$ [3] and ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{10}$ [2] have previously been reported along with studies as their utility as precursors to alumina-supported bimetallic particles [7]. It is of

[^0]interest to ascertain how these bimetallic clusters behave in their reactions with small organic moieties. We have shown previously [8] that the tetrahedral heterometallic cluster $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathbf{W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{10}$ reacts with alkynes ($\mathrm{RC} \equiv \mathrm{CR}$) by two pathways involving: (i) cleavage of a $\mathrm{W}-\mathrm{W}$ bond to form $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ir}_{2} \mathrm{~W}_{2}(\mathrm{CO})_{8}\left(\mathrm{C}_{2} \mathrm{R}_{2}\right)$, a species in which the $W_{2} \mathrm{Ir}_{2} \mathrm{C}_{2}$ framework is octahedral, and (ii) cleavage of an Ir-Ir bond along with ligand cleavage and alkylidene-alkyne coupling to form the μ_{3}-alkylidyne- $\mu_{3}-\eta^{3}$-allyldiyl species $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathbf{W}_{2} \mathrm{Ir} r_{2}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu_{3}-\eta^{3}-\mathrm{C}_{3} \mathrm{R}_{3}\right)$. We now report a structural study of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$, produced by reaction of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{10}$ with ethyl diazoacetate, $\mathrm{N}_{2} \mathrm{CHCO}_{2} \mathrm{Et}$. A preliminary account of this work has been published previously [9].

Experimental

Crystals suitable for X-ray diffraction studies, synthesized and characterized as described previously [9], were supplied by Professor J.R. Shapley and Dr. C.H. McAteer of the University of Illinois.

A purple-brown, rather plate-like, crystal of approximate orthogonal dimensions $0.3 \times 0.2 \times 0.1 \mathrm{~mm}^{3}$ was selected for the X-ray diffraction study. It was sealed, in an inert (Ar) atmosphere, into a 0.2 mm -diameter thin-walled glass capillary, which was mounted on a eucentric goniometer on a Syntex P2 automated four-circle diffractometer. Crystal alignment, determination of crystal class (monoclinic, $2 / \mathrm{m}$ diffraction symmetry), the orientation matrix and accurate cell dimensions (based on 25 reflections with $2 \theta 25-30^{\circ}$, appropriately dispersed in reciprocal space) were carried out as has been described previously [10]. Details of data collection (using a coupled θ (crystal) -2θ (counter) scan) are given in Table 1.

All data were corrected empirically for the effects of absorption ($\mu 191.6 \mathrm{~cm}^{-1}$) by interpolation, in both 2θ and ϕ, between normalized transmission curves based upon ψ-scans of a series of close-to-axial reflections. Corrections for Lorentz and polarization factors were applied and data were merged to provide a unique set. Any reflection with I (net) <0 was assigned the value $\left|F_{0}\right|=0$; none was expunged. Data were placed upon an approximately absolute scale by means of a Wilson plot.

The diffraction symmetry $\left(C_{2 h} ; 2 / m\right)$ and the systematic absences $h k l$ for $h+k=2 n+1$ and $h 0 l$ for $l=2 n+1(h=2 n+1)$ are consistent with the noncentrosymmetric space group $C c\left(C_{s}^{4}\right.$; No. 9) or the centrosymmetric monoclinic space group $C 2 / c$ ($C_{2 h}^{6}$; No. 15) [11]. The latter centrosymmetric possibility was chosen on the basis of (a) intensity statistics and (b) its greater probability with $Z=8$; the successful solution of the structure in this higher symmetry space group confirms the correctness of our choice.

Solution and refinement of the structure

All calculations were carried out under the SUNY-Buffalo version of the Syntex XTL crystallographic program package [12]. Structure factors were based upon the analytical functions for neutral atoms [13a]; both the real (Δf^{\prime}) and imaginary ($i \Delta f^{\prime \prime}$) components of anomalous dispersion [13b] were included for all non-hydrogen atoms. The function minimized during full-matrix least-squares refinement was

Table 1
Experimental data for the X-ray diffraction study of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$
(A) Crystal parameters at $24^{\circ} \mathrm{C}$

Cryst. system: monoclinic
a 34.0974(52) A
b $8.7057(12) \AA$
c $19.8106(31) \AA$
$\beta 111.053(12)^{\circ}$
V 5488.1(15) \AA^{3}
(B) Collection of diffraction data Diffractometer
Radiation
Monochromator

Scan type
Scan width
Reflections measd.
Bkgd measurement
Standard reflections

Absorption coeff.

Space group $C 2 / c\left(C_{2 h}^{6} ;\right.$ No. 15)
Formula $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Ir}_{2} \mathrm{O}_{11} \mathrm{~W}_{2}$
Mol. wt. 1250.6
$Z=8$
D (calicd.) $3.30 \mathrm{~g} \mathrm{~cm}^{-3}$

Syntex $\mathrm{P}_{1} 1$
Mo-K $K_{a}(\bar{\lambda} 0.710730$ Å)
highly oriented (pyrolytic) graphite, equatorial mode, $2 \theta_{\mathrm{m}} 12.2^{\circ}$, assumed 50% perfect/ 50% ideally mosaic for polarization correction.
coupled θ (crystal) -2θ (counter) at $2.5 \mathrm{deg} / \mathrm{min}$ in 2θ.
symmetrical, $\left[2.0+\Delta\left(\alpha_{2}-\alpha_{1}\right)\right]^{\circ}$
$+h,+k, \pm l$ for $h+k=2 n$ and $2 \theta=4.5-45.0^{\circ}$;
4114 total yielding 3621 unique data.
stationary crystal and counter at each end of the 2θ scan;
cach for onc-half of total scan time.
3 approximately mutually orthogonal reflections remeasured after each 97 data reflections; no significant fluctuations nor decay were observed.
$\mu\left(\right.$ Mo- $\left.K_{a}\right) 191.6 \mathrm{~cm}^{-1}$; empirical correction applied.
$\sum \mathrm{w}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right| D^{2}\right.$ where $w=\left[\left\{\sigma\left(\left|F_{\mathrm{o}}\right|\right)\right\}^{2}+\left\{0.03\left|F_{\mathrm{o}}\right|\right\}^{2}\right]^{-1}$. Discrepancy indices used below are defined in eq. 1-3.

$$
\begin{align*}
& R_{\mathrm{F}}(\%)=100 \sum\left\|\mathrm{~F}_{\mathrm{o}}\left|-F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}} \mid\right. \tag{1}\\
& R_{\mathrm{wF}}(\%)=100\left[\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} \tag{2}\\
& \mathrm{GOF}=\left[\Sigma \mathrm{w}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /(N R-N P)\right]^{1 / 2} \tag{3}
\end{align*}
$$

In, eq. $3, N R$ is the number of reflections and $N P$ is the number of parameters refined.

The phase problem was solved by direct methods by use of the program MULTAN [14]; the positions of the four heavy atoms were determined from an " E-map". The identities of the atoms were not immediately apparent (since $Z(W)=$ 74 versus $Z(\mathbf{I r})=77$) but were, in fact, assigned correctly based upon distances being $\mathbf{W}-\mathbf{W}>\mathrm{W}-\mathrm{Ir}>\mathrm{Ir}-\mathrm{Ir}$. A difference-Fourier map, based upon data phased by these four metal atoms, quickly revealed the positions of all remaining non-hydrogen atoms (and confirmed the identity of the W atoms by virtue of their attached $\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligands). Least-squares refinement of positional and thermal parameters (anisotropic only for the $\mathrm{W}_{2} \mathrm{Ir}_{2}$ core) for all non-hydrogen atoms, with all hydrogen atoms included in idealized positions $(d(\mathrm{C}-\mathrm{H}) 0.95 \AA[15]$ and the appropriate externally-bisecting planar ($s p^{2}$) or staggered tetrahedral ($s p^{3}$) geometry) led quickly to convergence with $R_{F} 4.7 \%, R_{\mathrm{w} F} 5.4 \%$ and $G O F=1.30$ for 181 parameters refined against all 3621 independent reflections. ($R_{F} 3.9 \%$ and $R_{\mathrm{w} F} 5.0 \%$ for those

Table 2
Final positional and thermal parameters for atoms in the $\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ molecule. Anisotropic thermal parameters (with esd's) for the metal atoms in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$,

Atom	x	y	z	$\boldsymbol{B}_{\text {iso }}$
$\overline{\mathrm{Ir}}(1)$	0.13084(2)	0.34064(6)	0.01421(3)	
$\operatorname{Ir}(2)$	0.16282(2)	$0.62015(7)$	0.01953(3)	
W(1)	0.07577(2)	0.59219(7)	-0.03703(3)	
W(2)	$0.13075(2)$	0.47482(8)	-0.11440(3)	
O(1)	0.03378(27)	0.4121(11)	-0.0947(5)	2.24(18)
$\mathrm{O}(2)$	0.02491(28)	$0.1828(11)$	-0.1475(6)	2.50(18)
$\mathrm{O}(3)$	0.22448 (33)	$0.5143(14)$	0.2105(7)	3.95(24)
O(4)	$0.23186(35)$	$0.3281(14)$	0.1370 (7)	4.16(24)
O(9)	0.07520(30)	$0.5028(12)$	$0.1135(6)$	3.13(20)
$\mathrm{O}(10)$	$0.13626(34)$	$0.8383(14)$	-0.1186(7)	4.07(24)
$\mathrm{O}(11)$	0.0466(4)	0.5773(15)	-0.2307(8)	4.84(28)
O(12)	0.0864(4)	0.1459(16)	0.0927(8)	5.22(29)
O(13)	0.1971(4)	0.1049(15)	0.0149(8)	4.95 (28)
O(14)	0.2569(4)	$0.6060(15)$	$0.0450(8)$	4.93(28)
$\mathrm{O}(15)$	0.1555(5)	$0.9037(18)$	0.0985 (9)	6.19(34)
C(1)	0.0945(4)	$0.2820(16)$	-0.0957(8)	2.15 (26)
C(2)	0.0505(4)	0.2951(18)	-0.1110(9)	2.74(28)
C(3)	-0.0202(5)	0.2080 (21)	-0.1708(10)	3.86(35)
C(4)	-0.0435(5)	$0.0636(19)$	-0.1989(10)	$3.39(32)$
C(5)	$0.1675(4)$	$0.4695(16)$	0.1055(8)	2.14 (25)
C(6)	0.2100(5)	$0.4285(19)$	$0.1505(10)$	3.16(31)
C(7)	0.2673(5)	$0.4948(21)$	$0.2609(10)$	3.68(33)
C(8)	0.2962(6)	0.5758(26)	0.2397(13)	5.6(5)
$\mathrm{C}(9)$	0.0781(4)	$0.5232(16)$	0.0574(8)	2.04(25)
C(10)	0.1371(4)	$0.7081(18)$	-0.0981(9)	2.78(29)
C(11)	0.0776(5)	$0.5415(18)$	-0.1823(10)	3.04(30)
C(12)	0.1028(5)	$0.2211(19)$	0.0604(9)	3.23(31)
C(13)	0.1738(5)	$0.1995(21)$	$0.0186(10)$	3.76(34)
C(14)	0.2211(5)	$0.6116(18)$	0.0358(9)	2.86(30)
C(15)	0.1605(5)	0.7965(21)	0.0683(11)	3.87(34)
$\mathrm{Cp}(1)$	0.0449(5)	0.8023(19)	-0.1137(9)	3.06(30)
$\mathrm{Cp}(2)$	0.0724(5)	$0.8597(19)$	-0.0451(10)	3.25(32)
Cp(3)	$0.0555(5)$	$0.8075(19)$	0.0070 (10)	3.21(30)
$\mathrm{Cp}(4)$	0.0184(4)	$0.7162(17)$	-0.0299(9)	2.59(27)
$\mathrm{Cp}(5)$	0.0131(5)	$0.7192(20)$	-0.1033(10)	3.79(34)
$\mathrm{Cp}^{(6)}$	0.1647(6)	$0.2757(23)$	-0.1562(11)	4.6(4)
$\mathrm{Cp}_{\mathrm{p}}(7)$	0.1972(6)	$0.3752(23)$	-0.1092(12)	4.6(4)
$\mathrm{Cp}(8)$	0.1906(5)	$0.5126(21)$	-0.1404(11)	3.94(35)
$\mathrm{Cp}(9)$	0.1563(6)	$0.5173(24)$	$-0.2074(12)$	5.0(4)
$\mathrm{Cp}(10)$	0.1390 (5)	$0.3695(21)$	-0.2165(11)	4.0(4)
H(1)	0.0480	0.8187	-0.1589	6.0
H(2)	0.0969	0.9203	-0.0362	6.0
H(3)	0.0666	0.8288	0.0574	6.0
H(4)	0.0011	0.6646	-0.0085	6.0
H(5)	-0.0093	0.6708	-0.1407	6.0
H(6)	0.1608	0.1695	-0.1488	6.0
H(7)	0.2188	0.3476	-0.0650	6.0
H(8)	0.2073	0.6000	-0.1198	6.0
H(9)	0.1469	0.6026	-0.2391	6.0
H(10)	0.1147	0.3363	-0.2554	6.0
H(11)	0.0926	0.2140	-0.1343	6.0

Table 2 (continued)

Atom	x	y	z	$\boldsymbol{B}_{\text {iso }}$
H(12)	0.1597	0.4833	0.1466	6.0
H(3A)	-0.0268	0.2430	-0.1307	6.0
H(3B)	-0.0281	0.2835	-0.2078	6.0
H(4A)	-0.0728	0.0824	-0.2138	6.0
H(4B)	-0.0356	-0.0121	-0.1619	6.0
H(4C)	-0.0369	0.0284	-0.2390	6.0
H(7A)	0.2689	0.5305	0.3071	6.0
H(7B)		0.2742	0.3887	0.2637
H(8A)	0.3236	0.5599		6.0
H(8B)		0.2895	0.6821	
H(8C)		0.2948	0.5403	
Atom	B_{11}		B_{22}	B_{33}
Ir(1)	$1.635(24)$	$2.118(28)$	$1.765(29)$	0.2369
Ir(2)	$1.753(25)$	$2.496(28)$	$1.541(28)$	-0.271935
W(1)	$1.583(24)$	$2.112(28)$	$1.389(28)$	$0.111(18)$
W(2)	$1.831(25)$	$3.619(33)$	$1.349(29)$	$-0.259(20)$

3216 reflections with $\left|F_{o}\right|>3 \boldsymbol{\sigma}\left(\left|F_{\mathrm{o}}\right|\right)$. A final difference-Fourier map showed no unexpected features; the largest residuals were peaks of height $\sim 1.3 \mathrm{e}^{-}$in the vicinity of the metal atoms. Final positional and thermal parameters are collected in Table 2.

Description of the structure

The crystal contains discrete molecular units of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}^{-}$ $\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ which are mutually separated by normal Van der Waals' distances; there are no abnormally close intermolecular contacts. Each molecule is chiral, but the crystal contains an ordered racemic mixture of the two enantiomers, by virtue of the inversion centers and c - and n-glide planes present in the centrosymmetric space group $C 2 / c$. The molecular geometry and atomic labelling scheme is depicted in Fig. 1, while a stereoscopic view of the molecule is provided by Fig. 2. Interatomic distances and angles, along with their esd's, are collected in Tables 3 and 4, respectively.

The molecule possesses a tetrahedral $\mathrm{W}_{2} \mathrm{Ir}_{2}$ core in which the homonuclear distances are $W(1)-W(2) 2.995(1) \AA$ and $\operatorname{Ir}(1)-\operatorname{Ir}(2) 2.653(1) \AA$. The four heteronuclear distances are, in decreasing order, $\operatorname{Ir}(1)-W(1) 2.825(1), \operatorname{Ir}(1)-W(2) 2.802(1)$, $\operatorname{Ir}(2)-W(2) 2.784(1)$ and $\operatorname{Ir}(2)-W(1) 2.781(1) \AA$; aver. $(\operatorname{Ir}-W) 2.798 \AA$. These bond lengths are similar to those found in the parent compound, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \operatorname{Ir}_{2}(\mathrm{CO})_{10}$ [2], viz., W-W 2.991(1), Ir-Ir 2.722(1) and Ir-W 2.796(1)-2.863(1) \AA (aver. 2.835 A).

The cluster as a whole is associated with the expected 60 outer valence electrons (i.e., two $d^{6} \mathbf{W}^{0}$ atoms, two $d^{9} \mathrm{Ir}^{0}$ atoms, two electrons from each of seven carbonyl ligands, five electrons from each of the two η^{5}-cyclopentadienyl systems, two electrons from the $\mu-\mathrm{CHCO}_{2} \mathrm{Et}$ ligand and four electrons from the $\mu_{3}-\mathrm{CHCO}_{2} \mathrm{Et}$ ligand). Nevertheless, the distribution of electrons is not uniform. Each iridium atom is linked to two terminal carbonyl ligands, but $\operatorname{Ir}(2)$ is bonded (through $\mathrm{C}(5)$)

Fig. 1. Labelling of atoms in the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ molecule (ORTEP2 diagram; 30\% probability ellipsoids). Note that "semi-bridging" $M \ldots C O$ interactions have not been drawn in (see text). Note that $\operatorname{lr}(2) \ldots C(10)$ is $2.307(16) \AA$.
to only one $\mathrm{CHCO}_{2} \mathrm{Et}$ ligand whereas $\operatorname{Ir}(1)$ is bonded to both $\mathrm{CHCO}_{2} \mathrm{Et}$ ligands (though $C(1)$ and $C(5)$). Each tungsten atom is attached to an η^{5}-cyclopentadienyl ligand. $W(1)$ is linked to a single carbonyl ligand and to the $\mu_{3}-\mathrm{CHCO}_{2} \mathrm{Et}$ ligand though $\mathrm{O}(1)$ of the ester group. In contrast to this, $\mathrm{W}(2)$ is associated with two carbonyl ligands and is linked (though $\mathrm{C}(1)$) to the same $\mu_{3}-\mathrm{CHCO}_{2} \mathrm{Et}$ ligand.

Fig. 2. A stereoscopic view of the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ molecule.

Table 3
Interatomic distances (\AA) and esd's for $\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right)_{2} \mathbf{W}_{\mathbf{2}} \mathbf{I r}_{\mathbf{2}}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$

Atoms	Distance	Atoms	Distance
(A) Metal-metal distances			
W(1)-W(2)	2.995(1)	$\operatorname{Ir}(1)-\operatorname{Ir}(2)$	2.653(1)
W(1)-Ir(1)	2.825(1)	W(2)-Ir(1)	2.802(1)
$\mathbf{W}(1)-\operatorname{Ir}(2)$	2.781(1)	W(2)-Ir(2)	2.784(1)
(B) Metal-CHCO2 ${ }_{2}$ Et distances			
$\operatorname{Ir}(1)-\mathrm{C}(1)$	2.144(15)	Ir(1)-C(5)	2.113(15)
W(2)-C(1)	2.193(14)	Ir(2)-C(5)	2.110(5)
W(1)-O(1)	$2.154(10)$		

(C) Distances within the CHCO_{2} Et ligands

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.427(22)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.449(23)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1.264(18)$	$\mathrm{C}(6)-\mathrm{O}(4)$	$1.239(21)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.336(19)$	$\mathrm{C}(6)-\mathrm{O}(3)$	$1.338(21)$
$\mathrm{O}(2)-\mathrm{C}(3)$	$1.454(22)$	$\mathrm{O}(3)-\mathrm{C}(7)$	$1.452(22)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.484(25)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.393(30)$

(D) M-CO and $\mathrm{C}-\mathrm{O}$ distances

$W(1)-C(9)$	$1.940(15)$
$\mathbf{W}(2)-C(10)$	$2.055(16)$
$W(2)-C(11)$	$1.918(17)$
$\operatorname{Ir}(1)-C(12)$	$1.862(17)$
$\operatorname{Ir}(1)-C(13)$	$1.889(19)$
$\operatorname{Ir}(2)-C(14)$	$1.897(17)$
$\operatorname{Ir}(2)-C(15)$	$1.832(19)$

(E) Passible semibridging M... CO distances $<3 \AA$

Ir(2) ... C(10)	2.307(16)	W(1)...C(11)	2.934(18)
Ir(1)...C(9)	2.757(14)	$\mathbf{W}(1) \ldots \mathrm{C}(10)$	2.945(16)
(F) W-($\left.\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances			
$\mathbf{W}(1)-\mathrm{Cp}(1)$	2.369(17)	W(2)-Cp(6)	2.390 (21)
W(1)-Cp(2)	2.334(17)	W(2)-Cp(7)	2.394(21)
W(1)-Cp(3)	2.278(17)	W(2)-Cp(8)	$2.300(19)$
W(1)-Cp(4)	2.284(16)	W(2)-Cp(9)	2.331(22)
W(1)-Cp(5)	2.345 (19)	$\mathrm{W}(2)-\mathrm{Cp}(10)$	2.328(20)
$\mathbf{W}(1)-\mathbf{C} \mathbf{p}^{\text {a }}$	1.984	$\mathbf{W}(2)-C p^{a}$	2.021

(G) C-C distances within the cyclopentadienyl ligands

$C p(1)-C p(2)$	$1.437(25)$	$C p(6)-C p(7)$	$1.450(29)$
$C p(2)-C p(3)$	$1.427(25)$	$C p(7)-C_{p}(8)$	$1.328(27)$
$C p(3)-C p(4)$	$1.451(23)$	$C p(8)-C p(9)$	$1.419(30)$
$C p(4)-C p(5)$	$1.400(25)$	$C p(9)-C p(10)$	$1.398(28)$
$C p(5)-C p(1)$	$1.379(25)$	$C p(10)-C p(6)$	$1.452(28)$
average	1.419 ± 0.029	Average	1.409 ± 0.051

${ }^{a} \mathrm{Cp}$ is the centroid of the appropriate $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand.

Formal electron counting shows that $\operatorname{Ir}(1)$ and $W(1)$ are each associated with 18 outer-valence electrons, W(2) with 19 and $\operatorname{Ir}(2)$ with 17.

The formally electron-rich nature of $W(2)$ and electron-poor nature of $\operatorname{Ir}(2)$ are balanced by electron donation through a "semi-bridging" interaction [16] of the carbonyl group $C(10)-O(10)$ with $\operatorname{Ir}(2)$. Thus, the $W(2)-C(10)$ bond of $2.055(16) \AA$

Table 4
Selected interatomic angles (deg) and esd's for $\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{\mathbf{2}} \mathrm{Ir}_{\mathbf{2}}(\mathrm{CO})_{7}\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$

Atoms	Angle	Atoms	Angle
(A) Intermetallic angles			
$\mathbf{W}(1)-\mathbf{W}(2)-\operatorname{Ir}(1)$	58.22(2)	$\mathbf{W}(1)-\operatorname{Ir}(1)-\operatorname{Ir}(2)$	60.92(2)
W(1)-W(2)-Ir(2)	57.39(2)	$\mathbf{W}(2)-\operatorname{Ir}(1)-\operatorname{Ir}(2)$	61.31(2)
$\operatorname{Ir}(1)-\mathrm{W}(2)-\operatorname{Ir}(2)$	56.71 (2)	$W(1)-\operatorname{Ir}(1)-W(2)$	64.32(2)
$\mathbf{W}(2)-W(1)-\operatorname{Ir}(1)$	57.46(2)	$W(1)-\operatorname{Ir}(2)-\operatorname{Ir}(1)$	62.61(2)
$\mathbf{W}(2)-W(1)-\operatorname{Ir}(2)$	57.49(2)	$W(2)-\operatorname{Ir}(2)-\operatorname{Ir}(1)$	61.98(2)
$\operatorname{Ir}(1)-\mathbf{W}(1)-\operatorname{Ir}(2)$	56.48 (2)	$\mathbf{W}(1)-\mathrm{Ir}(2)-\mathrm{W}(2)$	65.12(2)
(B) $\mathrm{C}-\mathrm{M}-\mathrm{M}$ and $\mathrm{M}-\mathrm{C}-\mathrm{M}$ angles involving the $\mathrm{CHCO}_{2} \mathrm{Et}$ ligands			
$\mathrm{C}(1)-\operatorname{Ir}(1)-\operatorname{Ir}(2)$	109.75(39)	$\mathrm{C}(5)-\operatorname{Ir}(1)-\operatorname{Ir}(2)$	51.03(40)
$\mathrm{C}(1)-\operatorname{Ir}(1)-\mathrm{W}(1)$	75.71(39)	$\mathrm{C}(5)-\operatorname{Ir}(1)-\mathrm{W}(1)$	$90.47(40)$
$\mathrm{C}(1)-\operatorname{Ir}(1)-\mathrm{W}(2)$	50.52(39)	$C(5)-\operatorname{Ir}(1)-W(2)$	111.36(40)
$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{Ir}(1)$	49.01(38)	$C(5)-\operatorname{Ir}(2)-\operatorname{Ir}(1)$	51.14(40)
$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{W}(1)$	71.40(38)	$\mathrm{C}(5)-\mathrm{Ir}(2)-\mathrm{W}(1)$	91.76(40)
$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{Ir}(2)$	103.84(38)	$C(5)-\operatorname{Ir}(2)-W(2)$	112.2(40)
$\operatorname{Ir}(1)-\mathrm{C}(1)-\mathbf{W}(2)$	80.47(50)	$\operatorname{Ir}(1)-\mathrm{C}(5)-\operatorname{Ir}(2)$	77.83(50)
(C) Angles within the CHCO_{2} Et ligands			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	123.1(14)	$C(5)-C(6)-O(4)$	125.9(16)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	119.3(14)	$C(5)-C(6)-O(3)$	112.2(14)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	117.5(14)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{O}(3)$	121.9(16)
$C(2)-O(2)-C(3)$	118.1(12)	$C(6)-O(3)-C(7)$	120.3(14)
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110.7(14)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	112.2(16)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{W}(1)$	116.6(10)		
(D) Metal-carbon - oxygen angles			
$\mathrm{W}(1)-\mathrm{C}(9)-\mathrm{O}(9)$	168.6(13)	$\mathrm{Ir}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	176.9(15)
W(2)-C(10)-O(1)	153.1(13)	$\operatorname{Ir}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	172.7(16)
$\mathrm{W}(2)-\mathrm{C}(11)-\mathrm{O}(11)$	171.9(15)	Ir(2)-C(14)-O(14)	179.3(15)
		$\mathrm{Ir}(2)-\mathrm{C}(15)-\mathrm{O}(15)$	174.1(18)
Ir(1) . . C C(9)-O(9)	119.8(11)	Ir(2) $\cdots \mathrm{C}(10)-\mathrm{O}(10)$	127.5(12)
W(1) \cdots C(11)-O(11)	115.2(12)	W(1) . . C $\mathrm{C}(10)-\mathrm{O}(10)$	121.9(12)
(E) Angles within the cyclopentadienyl ligands			
$\mathbf{C p (5) - C p (1) - C p (2) ~}$	108.9(15)	$\mathrm{Cp}(10)-\mathrm{Cp}(6)-\mathrm{Cp}(7)$	106.7(17)
$\mathrm{Cp}_{\mathrm{p}}(1)-\mathrm{Cp}_{\mathbf{p}}(2)-\mathrm{Cp}_{\mathbf{p}}(3)$	106.1(15)	$\mathrm{Cp}_{\mathrm{p}}(6)-\mathrm{Cp}(7)-\mathrm{Cp}(8)$	106.1(18)
$\mathrm{CP}_{\mathbf{P}}(2)-\mathrm{CP}_{\mathrm{P}}(3)-\mathrm{Cp}^{(4)}$	108.4(15)	$\mathrm{Cp}^{(7)}-\mathrm{Cp}^{(8)}-\mathrm{Cp}^{(9)}$	113.9(18)
$\mathrm{Cp}_{P}(3)-\mathrm{Cp}_{P}(4)-\mathrm{Cp}^{(5)}$	106.1(14)	$\mathrm{Cp}(8)-\mathrm{Cp}(9)-\mathrm{Cp}(10)$	105.2(18)
$\mathbf{C P}(4)-\mathrm{CP}^{(5)-C P(1)}$	110.6(16)	$C p(9)-C p(10)-C p(6)$	108.1(18)

is longer than the other $W-C O$ bonds (cf. $W(1)-C(9) 1.940(15) \AA$ and $W(2)-C(11)$ $1.918(17) \AA$; average $1.929 \pm 0.016 \AA$), and is accompanied by the "semi-bridging" interaction $\operatorname{Ir}(2) \cdots C(10) 2.307(16) \AA$, with angle $W(2)-C(10)-O(10) 153.1(13)^{\circ}$ and angle $\operatorname{Ir}(2) \cdots \mathrm{C}(10)-\mathrm{O}(10) 127.5(12)^{\circ}$. The " α-value" for this interaction defined [17] as $\left(d_{2}-d_{1}\right) / d_{1}$ (where d_{1} is the shorter $\mathrm{M}-\mathrm{CO}$ distance and d_{2} is the longer $\mathrm{M}-\mathrm{CO}$ distance) is 0.12 ; this is at the "strong interaction" end of the range ($\alpha=0.1-0.6$) that Curtis et al. [16] define as the semi-bridging regime. It should be emphasized that the heteronuclear nature of the semi-bridged $\mathbf{W}(2)-\operatorname{Ir}(2)$ linkage, coupled with internally calculated atomic radii of $r(W) 1.498 \AA$ (from $W(1)-W(2)$ $2.995(1) \AA$) and $r(\operatorname{Ir}) 1.327 \AA$ (from $\operatorname{Ir}(1)-\operatorname{Ir}(2) 2.653(1) \AA)$, lead to a "partially-corrected α-value" of 0.21 , which we believe to be a more realistic value. Here we
define the "partially-corrected α-value" as $\left[\left(d_{1}-r\left(\mathrm{M}_{1}\right)\right)-\left(d_{2}-r\left(\mathrm{M}_{2}\right)\right)\right] / d_{1}$. We see no unique way of correcting the denominator $\left(d_{1}\right)$ for differences in radii between M_{1} and M_{2}. Clearly, however, the interaction is of a "semi-bridging" rather than simple " μ_{2}-bridging" nature.

The remaining $\mathrm{W}-\mathrm{C}-\mathrm{O}$ systems show substantial deviations from linearity and some possible very weak interactions with other metal atoms. These are of far less importance than the $W(2)-C(10) \cdots \operatorname{Ir}(2)$ interaction and could simply result from the crowding of ligands on the coordination surface of the $\mathbf{W}_{2} \mathbf{I r}_{2}$ cluster. In decreasing order of importance there are as follows:
(i) angle $W(1)-C(9)-O(9) 168.6(13)^{\circ}$, with $W(1)-C(9) 1.940(15) \AA$ and $\operatorname{Ir}(1) \cdots C(9)$ $2.757(14) \AA$, yielding $\alpha=0.42$ and $\alpha($ partially corrected $)=0.51$ for the W(1)-C(9) $\cdots \operatorname{Ir}(1)$ interaction;
(ii) angle $\mathrm{W}(2)-\mathrm{C}(11)-\mathrm{O}(11) 171.9(15)^{\circ}$, with $\mathrm{W}(2)-\mathrm{C}(11) 1.918(17) \AA$ and $\mathrm{W}(1) \cdots \mathrm{C}(11) 2.934(18)^{\circ}$ with $\alpha=0.53$ for the $\mathrm{W}(2)-\mathrm{C}(11) \cdots \mathrm{W}(1)$ interaction; (iii) a second weak interaction of $W(2)-C(10)-O(10)$ with another metal atom; thus $W(1) \cdots C(10) 2.945(16) \AA$ as compared to $W(2)-C(10) 2.055$ (16) \AA, providing $\alpha=0.43$ for the $W(2)-C(10) \cdots W(1)$ interaction.

In contrast to the above, the $\mathrm{Ir}-\mathrm{C}-\mathrm{O}$ systems are close to linear (172.7(16)-179.3(15) ${ }^{\circ}$) and Ir-CO distances are internally consistent (1.832(15)$1.897(17) \AA$, average $1.870 \pm 0.029 \AA$).

The most interesting feature of the structure is the presence of two bridging $\mathrm{CHCO}_{2} \mathrm{Et}$ ligands which are linked by two different modes to the tetrahedral $\mathbf{W}_{2} \mathrm{Ir}_{2}$ cluster. The $\mathrm{CHCO}_{2} \mathrm{Et}$ ligand with $\mathrm{C}(5)$ as its α-carbon atom bridges the $\operatorname{Ir}(1)-\operatorname{Ir}(2)$ linkage symmetrically, with $\operatorname{Ir}(1)-C(5) 2.113(15) \AA$ and $\operatorname{Ir}(2)-C(5) 2.110(15) \AA$ (average $2.112 \pm 0.002 \AA$); the angle $\operatorname{Ir}(1)-C(5)-\operatorname{Ir}(2)$ is $77.83(50)^{\circ}$. Other dimensions in this ligand are normal, with $C(5)-C(6) 1.449(23) \AA, C(6)-O(3) 1.338(21)$ \AA and $\mathrm{C}(6)=\mathrm{O}(4) 1.239(21) \AA$.

The second $\mathrm{CHCO}_{2} \mathrm{Et}$ ligand, with $\mathrm{C}(1)$ as its α-carbon atom, caps the cluster face $\operatorname{Ir}(1)-W(1)-W(2)$ in a $\mu_{3}-\eta^{2}$ mode. Thus, $C(1)$ bridges the $\operatorname{Ir}(1)-W(2)$ linkage with $\operatorname{Ir}(1)-C(1) 2.144(15) \AA, W(2)-C(1) 2.193(14) \AA$ and angle $\operatorname{Ir}(1)-C(1)-W(2)$ $80.47(50)^{\circ}$. In addition, $\mathrm{O}(1)$, the ketonic oxygen atom of the ester group, provides a σ-donor linkage to $W(1)$, with $W(1)-O(1) 2.154(10) \AA$. Other dimensions in this ligand include $C(1)-C(2) 1.427(22) \AA, C(2)-O(2) \quad 1.336(19) \AA$ and $C(2)=O(1)$ $1.264(18) \AA$. The increase in $C(2)=O(1)$ relative to $C(6)=O(4)$ is in the expected direction but is not statistically significant beyond the 1.3σ level.

The parent molecule $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{10}$ [2] is known to have a crowded coordination surface and it is probably impossible to replace two carbonyl groups by $\mu-\mathrm{CHCO}_{2} \mathrm{Et}$ ligands to form $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{CHCO}_{2} \mathrm{Et}\right)_{2}$ because of the greater cone angle of $\mu-\mathrm{CHCO}_{2} \mathrm{Et}$ versus CO . The observed product ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2} \mathrm{Ir}_{2}(\mathrm{CO})_{7}\left(\mu-\mathrm{CHCO}_{2} \mathrm{Et}\right)\left(\mu_{3}-\eta^{2}-\mathrm{C}, \mathrm{C}, \mathrm{O}-\mathrm{CHCO} 2 \mathrm{Et}\right)$, in which three carbonyl groups are replaced by two CHCO_{2} Et groups, is presumably the lowest energy sterically attainable structure with the minimum number of carbonyls removed.

Additional material. A table of observed and calculated structure factor amplitudes is available upon request from one of us (M.R.C.).

References

[^1] Chem., 312 (1986) 121.

2 Part V. M.R. Churchill, C. Bueno and J.P. Hutchinson, Inorg. Chem., 21 (1982) 1359.
3 Part IV. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 20 (1981) 4112.
4 Part III. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 19 (1980) 2765.
5 Part II. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 18 (1979) 2451.
6 Part I. M.R. Churchill and J.P. Hutchinson, Inorg. Chem., 17 (1978) 3528.
7 J.R. Shapley, S.J. Hardwick, D.S. Foose, G.D. Stucky, M.R. Churchill, C. Bueno and J.P. Hutchinson, J. Am. Chem. Soc., 103 (1981) 7383.
8 J.R. Shapley, C.H. McAteer, M.R. Churchill and L.V. Biondi, Organometallics, 3 (1984) 1595.
9 M.R. Churchill, L.V. Biondi, J.R. Shapley and C.H. McAteer, J. Organomet. Chem., 280 (1985) C63.
10 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
11 International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, Birmingham, England, 1965 : pp 89 and 101.
12 Syntex XTL Operations Manual (2nd ed), Syntex Analytical Instruments, Cupertino, California (1976).

13 International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, England, 1974: (a) p. 99-101; (b) p. 149-150.

14 G. Germain, P. Main and M.M. Woolfson, Acta Crystallogr., A, 27 (1971) 368.
15 M.R. Churchill, Inorg. Chem. 12 (1973) 1213.
16 F.A. Cotton, Prog. Inorg. Chem., 21 (1976) 1.
17 M.D. Curtis, K.R. Han, and W.M. Butler, Inorg. Chem., 19 (1980) 2096.

[^0]: * For previous parts, see ref. 1-6.

[^1]: 1 Part VI. M.R. Churchill, Y.J. Li, J.R. Shapley, D.S. Foose and W.S. Uchiyama, J. Organomet.

